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Abstract: We use Fourier analysis to access risk in financial products. With it we analyze price 
changes of e.g. stocks. Via Fourier analysis we scrutinize quantitatively whether the frequency of 
change is higher than a change in (conserved) company value would allow. If it is the case, it would 
be a clear indicator of speculation and with it risk. The entire methods or better its application is 
fairly new. However, there were severe flaws in previous attempts; making the results (not the 
method) doubtful. We corrected all these mistakes by e.g. using Fourier transformation instead of 
discrete Fourier analysis. Our analysis is reliable in the entire frequency band, even for frequency 
of 1/1d or higher if the prices are noted accordingly. For the stocks scrutinized we found that the 
price of stocks changes disproportionally within one week which clearly indicates speculation. It 
would be an interesting extension to apply the method to crypto currencies as these currencies have 
no conserved value which makes normal considerations of volatility difficult. 
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1. Introduction 
Almost all financial products (e.g. stocks) have neither constant prices nor fixed inter-

est. The price of a stock is supposed to reflect the future earnings of the underlying company. 
As it is impossible to know the future, one can only speculate about it. The fluctuating price 
of a stock can be too high or too low compared to the future to come. In essence there is 
certain risk involve in buying stocks and the like. 

There are many ways to estimate risk involved. One of the most common tools is to 
calculate the mean quadratic deviation around an average (standard deviation) which leads 
to the so-called volatility. Here we will investigate in a related but fairly new way. Of course 
there are more advanced ways to access risk in the financial world rather than just looking 
for volatility. As an example consider (Fahling et al. 2018). 

In section 2.1 we will explain the Fourier analysis. Anything (e.g. prices) which changes 
over time does so slowly or rapidly. There is a frequency of change. High frequencies mean 
rapid changes and low frequencies mean slow ones. This is exactly comparable to a tone of 
an orchestra. Any sound is a variation in pressure. The different instruments (and even a 
single instrument) produce pressure changes with higher and lower frequencies. A Fourier 
analysis will give the amplitudes (strengths) of each frequency of (sinusoidal) pressure 
change. 

Applying this to e.g. stock prices will lead to something like x% of the changes of a 
stock price was due to daily change (high frequency), y% came from monthly changes (me-
dium frequency), and z% from annual changes (low frequency). Of course a real spectrum 
will consist of many more frequencies. The maybe earliest attempts to access risk via Fourier 
can be found in (Bormetti et al. 2010) and (Baruník and Křehlík 2018), respectively. How-
ever, these works focus on (valuable) technical aspects and not so much on measures for 
risk assessment in the world of finance. 
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(Schädler 2018) used Fourier (probably independent of the above) to find a tool for 
determining risk in financial products. It has been extended by (Schädler and Steurer 2019) 
and applied to portfolio selection (Fahling et al. 2019). The general idea was as follows. The 
value (profitability) of a company may increase (or decrease) because of new products, new 
technology, new inventions, new markets, and many more factors. All this will take time. 
To develop a new product may take a year, to introduce it the market another one. Even 
very quick measures might take several months. A change of price of a company within e.g. 
a week must be purely speculative and cannot be connected to the (conserved) company 
value. As an example consider one week in fall 2008 when the stock of Volkswagen AG (a 
German car maker) gained and lost fourfold within a week (Appel and Grabinski 2011). 
Nobody visiting the company rather than the stock market would have noticed anything 
special during that week. 

Using Fourier to analyze the stocks will show the frequencies of the changes in stock 
price. If the spectrum is dominated by high frequencies it means that these changes are spec-
ulative. (Schädler 2018) called this irrationality. The general idea is marvelous. However, 
there are some severe flaws. Especially, frequencies over 1 (10 days)⁄ = 1 (2 weeks)⁄  were 
neglected because they could not be included for principle (technical) reasons. As it turns 
out, these high frequencies are essential. Some other flaws such as using the quadratic am-
plitudes produced results which are not there in reality. For more detail please see section 
2.2. 

The main purpose of this paper is to fix these problems and draw conclusions from it. 
Firstly, we transformed the stock prices so that frequencies as high as 1 (1 day)⁄  can be re-
liably used. (As we considered daily prices only, 1 (1 day)⁄  is the limit. However, using 
more frequently listed prices would allow arbitrarily high frequencies) Secondly, we used a 
Fourier transformation rather than a discrete analysis. For more details please see chapter 3. 

In chapter 4 we present our results. An indeed we found a typical “irrationality” for 
frequencies ≥ 1 (5 days)⁄ . These results correspond to “gut-feeling” as crazy ups and 
downs within the stock market appear not rarely within one week and are forgotten in the 
next one. 

We close with conclusions and future work in chapter 5. Though our work is precise, 
it consumes lots of computing power. So some simplification is desirable. It may also lead 
to much more useful conclusions from the Fourier transformed price. 

It appears to be also very interesting to apply our method to other financial products 
especially crypto currencies. A risk assessment via volatility is very tricky there, cf. the 
newer works of (Almeida et al. 2023), (Bowala and Sigh 2022), and (Irfan et al. 2023). Fou-
rier analysis promises new insights. 

 

2. General method and previous shortcomings 
This section provides an overview how a Fourier transformation can be used to give 

a risk measure of financial assets. 2.1 provides the general idea including a brief summary 
of the mathematics behind it. 

In 2.2 the general problems are discussed and especially the shortcomings of 
(Schädler 2018) and (Schädler and Steurer 2019). 

 
2.1. The general method 

The Fourier transformation is an over 200-year-old tool mostly applied to analyze 
frequencies in a signal (spectral analysis) or to solve an arbitrary set of linear partial dif-
ferential equations. First, the Fourier series is introduced. 

Any periodic function 𝑓𝑓(𝑡𝑡) can be written as a series of harmonic functions: 

𝑓𝑓(𝑡𝑡) = �𝑎𝑎𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔) + 𝑏𝑏𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
∞

𝑘𝑘=0

 (1) 
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Here a period of 𝑇𝑇 has been assumed so that 𝜔𝜔 = 2𝜋𝜋 𝑇𝑇⁄ . The coefficients 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 are 
determined by 

𝑎𝑎𝑘𝑘 =
2
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
𝑇𝑇

0

       𝑎𝑎𝑎𝑎𝑎𝑎      𝑏𝑏𝑘𝑘 =
2
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ∙ 𝜔𝜔𝜔𝜔)
𝑇𝑇

0

 (2) 

A proof of Eq. (2) is performed by inserting 𝑓𝑓(𝑡𝑡) of Eq. (1) into Eq. (2) and performing 
the integration. A Fourier series exists only if the integrals of Eq. (2) exist. Of course any-
thing can be found in books like e.g. (Bronshtein et al. 2007) 

The interpretation of the Fourier transformation is as follows. The function 𝑓𝑓(𝑡𝑡) is 
changing over time. If it is changing “rapidly,” it is a high frequency, if it is changing 
“slowly,” it is a low frequency. In a general function 𝑓𝑓(𝑡𝑡) there are of course slow and 
rapid changes. It is a mixture of frequencies. The 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 are the amplitudes of the set 
of frequencies. So the Fourier transformation analyses quantitively how much a financial 
assets changes e.g. on a daily, monthly, or yearly bases. 

Before discussing the application for financial assets, there are other “versions” of a 
Fourier transformation. Instead of having discrete frequencies, continuous frequencies 
can be applied. 𝑎𝑎𝑘𝑘 or 𝑏𝑏𝑘𝑘 are then becoming a function rather than a set of discrete pa-
rameters. This leads to the so-called Fourier transformation. The Fourier transformed 
𝑓𝑓(𝜔𝜔) of a not necessarily periodic function 𝑓𝑓(𝑡𝑡) is defined by 

𝑓𝑓(𝜔𝜔) ≡ � 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞

 (3) 

As usual 𝑖𝑖2 ≡ −1. There is also a backward transformation given by 

𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋
� 𝑑𝑑𝑑𝑑 𝑓𝑓(𝜔𝜔) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞

 (4) 

The proof of Eq. (3) or (4) is again performed by inserting Eq. (3) into Eq. (4) or vice versa. 
The Fourier transformed exists if the integral in Eq. (3) exists. Eq. (4) is the continuous 
analogue to Eq. (1). The sum in Eq. (1) is transformed into an integral and the discrete 
coefficients 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 are now a function 𝑓𝑓(𝜔𝜔). The absolute value �𝑓𝑓(𝜔𝜔)� is the “am-
plitude” of this particular frequency 𝜔𝜔. Please do not be confused that 𝑓𝑓(𝜔𝜔) has complex 
values (even if 𝑓𝑓(𝑡𝑡) is real). The identity 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) + 𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔) (5) 

shows that the real part of 𝑓𝑓(𝜔𝜔) corresponds to 𝑎𝑎𝑘𝑘 and the imaginary part to 𝑏𝑏𝑘𝑘. In this 
sense one sometimes speaks of the cosine or sine transformed function. In the same token 
one may use Eq. (5) to rewrite Eq. (1) into 

𝑓𝑓(𝑡𝑡) = � 𝑐𝑐𝑘𝑘 ∙ 𝑒𝑒𝑘𝑘∙𝑖𝑖𝑖𝑖𝑖𝑖
∞

𝑘𝑘=−∞

 (6) 

with 𝑐𝑐𝑘𝑘 ∈ ℂ given by 

𝑐𝑐𝑘𝑘 =
1
𝑇𝑇
�𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡) ∙ 𝑒𝑒−𝑘𝑘∙𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇

0

 (7) 

Eqs. (6) and (7) are only a different writing of Eqs. (1) and (2). 
With this short course in mathematics, we can show how this can be used in evalu-

ating financial assets. The price of anything (and especially financial products) can be dis-
played by a function 𝑓𝑓(𝑡𝑡). If the financial product is a stock or similar, its price may 
change rapidly or with high frequency. In the classical interpretation of (Fama 1970) there 
are random fluctuations. Meanwhile it had been proven that they are chaotic (Klinkova 
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and Grabinski 2017b). At least for stocks where there is an underlying value of a company, 
the change in price should reflect the change in company value or better expected future 
value. 

In a fixed interest financial product there is no risk (except for the underlying cur-
rency) and therefore no fluctuation. Therefore fluctuations are taken for a measure of risk. 
The most often used approach is volatility or standard deviation. There are more ad-
vanced methods which are cum grano salis based upon volatility. 

Using Fourier analysis to scrutinize risk is a method suggested by (Schädler 2018). 
The idea behind it goes as follows. The (changing) price of a stock should reflect the (fu-
ture) value of the company. However, the price of a stock may change within a millisec-
ond (or shorter). The (conserved) value of a company may change over months or even 
years. Obviously fast changes are due to pure speculation. As a typical example consider 
the stock of VW, German car manufacturer. In fall 2008 its stocks gained and loosed four-
fold within a week (Appel and Grabinski 2011). The explanation for it was simple. There 
was a takeover poker with Porsche, a German sports car manufacturer. However, the 
“real” value of Volkswagen did not butch at all during that week. That led to the concept 
of conserved value (cannot change rapidly) and speculation (Appel and Grabinski 2011). 
It is also the main idea behind using Fourier analysis to access risk. If the amplitudes for 
high frequencies (e.g. |𝑐𝑐𝑘𝑘≫1| of Eq. (7)) are “big” compared to the others, it is “irrational” 
(a term phrased by (Schädler 2018)), speculation and with-it risk is dominant. Therefore 
(Schädler 2018) introduced the ratio 

∑ |𝑐𝑐𝑘𝑘|𝑁𝑁
𝑘𝑘=0

∑ |𝑐𝑐𝑘𝑘|∞
𝑘𝑘=0

 (8) 

|𝑐𝑐𝑁𝑁|  is the amplitude of a frequency 𝑁𝑁𝑁𝑁  which is still considered reasonable (e.g. 
1/(3 months)). The closer the ratio of Eq. (8) is to 1, the lesser is speculation or irrational-
ity. To choose 𝑁𝑁 is of course arbitrary. However, one may also scrutinize the entire spec-
trum of |𝑐𝑐𝑘𝑘| and draw conclusions from it. 

In Table 1 some results from (Schädler 2018) have been displayed. For exactly how 
these irrationalities are calculated see (Schädler 2018) and (Schädler and Steurer 2019). 
Some of it will be discussed in section 2.2. These three particular stocks will be reconsid-
ered in chapter 3: 
Table 1. Some results taken from (Schädler 2018). 

Company Irrationality 
BASF SE 77.8% 
SAP SE 79.2% 
Deutsche Bank AG 82.8% 

Up to now we have shown the fairly new method of using Fourier transformation to 
access risk. In what follows we will discuss problems and shortcomings of this approach. 

 

2.2. Previous shortcomings 
The general technique from the last section has been used in e.g. physics for centuries 

for e.g. analyzing radio signals from far away solar systems in order to discover orbiting 
planets. It is also a standard tool to solve linear differential equations. The theory and 
especially its applications in the real world are for sure correct. 

For the application here there is a severe difference. We do not have a function 𝑓𝑓(𝑡𝑡). 
We just have discrete quotes for prices. This does not look like a severe problem as Figure 
1 shows the end of day prices of BASF SE (a German chemical giant) for 5050 trading days. 
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Figure 1. Price of BASF stock between January 2, 1997 and December 30, 2016. 
 

Though the graphics of Figure 1 looks like a perfect approximation for a function  
𝑓𝑓:ℝ+ → ℝ+, it isn’t one for principle reasons. There are 5050 discrete points which aren’t 
equally distant. Within 20 years there are typically 5050 trading days as the stock market 
formally closes over the weekend and some holidays. Formally speaking, any integral 
over a “function” displayed in Figure 1 is zero. 

Stock prices are quoted much more often than daily. Though there is partly a price 
every millisecond, sometimes it takes many minutes for a new price. But even considering 
any quoted price, the problem of discrete prices does remain. Furthermore such historic 
values are hard to get, make different stocks not comparable as their prices are quoted at 
different times, and would lead to tremendous amounts of data. From chapter 3 it would 
be clear that even the 5,050 prices considered here do lead a huge CPU time. 

In experimental physics (especially astronomy) there are also discrete values which 
should be Fourier transformed. They are not a discrete series in itself. Normally it was not 
possible to measure the signals continuously. This is in contrast to the financial data. 
Prices on the stock market do not exist between two quotes. As the price of a stock is in 
almost all circumstances far away from the conserved value (Appel and Grabinski 2011) 
of the company considered, it does not make sense to speculate about continuous prices. 

A function being Fourier transformed via Eqs. (1) and (2) must be periodic. The trans-
formation involving Eqs. (3) and (4) need an integrable function running form minus in-
finity to plus infinity. Obviously neither requirement is met by a “function” like in Figure 
1. Of course it is easy to make the function periodic just as it is done in solid states physics. 
Or for using Eqs. (3) and (4) it can be assumed a function running from minus infinity to 
plus infinity just by setting it to zero outside the regime displayed in Figure 1. 

In (Schädler 2018) and (Schädler and Steurer 2019) the problem has been omitted by 
using a discrete Fourier transformation. It is the analog to a continuous Fourier transfor-
mation for a set of discrete numbers. It is textbook knowledge (Bronshtein et al 2007) and 
has been applied to e.g. random numbers (Lanczos and Gellai 1975) where a “normal” 
Fourier analysis is not possible as a random function is not integrable (at least not by using 
Riemann integrals). A discrete Fourier analysis is considered an approximation to the Fou-
rier analysis of Eqs. (1) and (2). It is not clear how big the mistake of this approximation 
is here but it seems to be small. 

The main limitation in (Schädler 2018) and (Schädler and Steurer 2019) was that fre-
quencies > 1 (10 days)⁄  were not considered. It has been because all values were ob-
served on a daily basis only. So frequencies > 1 (1 day)⁄  are for sure nonsense. 
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Considering frequencies at least ten times lower avoids for sure nuisance effects. On the 
other hand, 10 days are two trading weeks. What if the main “irrational” fluctuations ap-
pear in this period? Just by observing the stock market it looks like that there are typically 
highly fluctuating weeks rather than months. As an archetype example just consider the 
“crazy” week of the VW stock in fall 2008 mentioned in section 2.1 (Appel and Grabinski 
2011). By considering frequencies < 1 (10 days)⁄  such purely speculative fluctuations are 
excluded. And indeed, chapter 4 will prove that the main effect appears within frequen-
cies > 1 (5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⁄  (and ≤ 1 (1 days)⁄ ). 

Besides considering too low frequencies, (Schädler 2018) and (Schädler and Steurer 
2019) considered the squares of the amplitudes |𝑐𝑐𝑘𝑘|. Squares make “small things smaller 
and big things bigger.” However, squaring is unlike the Fourier transformation not a lin-
ear transformation. Therefore the results depend on the chosen dimension. Here it de-
pends on whether the stocks are quoted in € or Yen and the time is measured in days or 
seconds. Taking the square will amplify differences. Why not taking the fourth, sixth, 
eighth, or tenth power? In doing so differences which are below the measurement accu-
racy will suddenly appear to be within the accuracy. 

It does not help that this squaring is often wrongly used. Even by performing a least 
square fit it is supposed to be a “least absolute value fit” (Grabinski and Klinkova 2020). 
In (Schädler 2018) and (Schädler and Steurer 2019) the squaring was used because they 
wanted to scrutinize the power spectrum. However, this is no justification here. In the be-
fore mentioned radio signals from outer space a power spectrum or squared amplitudes 
do make sense. Directly measured is an electric (or magnetic) field. The amplitudes of this 
electromagnetic field are almost meaningless from the physical point of view. As the en-
ergy or here energy current is a conserved quantity which is proportional to the square of 
an amplitude, scrutinizing the squares of the amplitudes scrutinizes the (conserved) en-
ergy pro time which is also known as power (measured in e.g. Watts). (Therefore the name 
power spectrum) 

Transferring this one-to-one into the financial world is ludicrous. The price of a stock 
and also its square is not a conserved value (Appel and Grabinski 2011). Therefore the 
fluctuations which are due to speculation and with it risk. It does not help to square the 
prices or here their changes per time. 

 

3. The new method used 
Having highlighted the shortcomings in previous publications, it is now easy to fix 

these problems. 
First one has to make a function out of the data points in Figure 1. Financial products 

with no fluctuations (e.g. fixed interest) are growing or decaying exponentially. As we are 
not considering any fluctuations between two quoted prices, it is only natural to connect 
data points by exponential curves just as they were fixed interest assets with no fluctua-
tions. It is straight forward (but maybe puzzling) to do this for all 5,050 prices. To see the 
difference, we display the first ten trading days of BASF SE in Figure 2. As a next step we 

Figure 2. Transfomation of separate prices of BASF SE to continuous function. 
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deduct the average interest from each exponential line connecting two data points. With-
out fluctuations we would have a straight line now. As a last step we subtract the value 
of the first data point (which is equal to the last data point) from each data point. In Figure 
3 it is shown schematically how the sperate data points of Figure 1 transforms into a Fou-
rier transformable function. On the r.h.s. of Figure 3 we have now a perfectly fine Fourier 

 
transformable function containing the fluctuations only. The same must be done for all 
data being analyzed. 

The Fourier transformable function on the r.h.s. of Figure 3 should be transformed 
by using Eq. (3) rather than (7) because one week would contain only five 𝑐𝑐𝑘𝑘 which must 
be compared to over 5,000 “ordinary” amplitudes. The function on the r.h.s. of Figure 3 is 
a piecewise exponential function. Its Fourier transformed can be obtained very easily an-
alytically. Its absolute value is a “simple” but very long formula. In Eq. (9) the result has  

�𝑓𝑓(𝜔𝜔)� = √((−
5.879096792750167(−Cos[𝜔𝜔] + Cos[5050𝜔𝜔])

𝜔𝜔
+. . . +3.558113329776304

× 10−10Sin[5051𝜔𝜔])))²) 
(9) 

been displayed for the example of BASF SE. Displaying the Fourier transformed (or more 
precisely its absolute value) in Eq. (9) in full (even in this not very nice format) will take 
over 500 pages. To handle this function is possible with a computer algebra such as Math-
ematica only. In Figure 4 the function from Eq. (9) has been displayed. It has some simi-

larities to the 5,050 amplitudes in (Schädler 2018) (figure 1 there). Please note that Figure 
4 contains a function and not separate values. The details can be seen in the enlargement 
in Figure 5. As we see, frequencies of 1 (several days)⁄  are slightly more pronounced as 

Figure 3. Transformation of separate prices of BASF SE into function. 

Figure 4. Fourier transformed of BASF SE price 
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the peaks of slightly lower frequencies. At first glance it looks like a nuisance effect. How-
ever, it is a true effect as we can easily show if we plot the same as in Figure 5 but for SAP 
SE. In Figure 6 we see a dramatically enhanced peak. This proves the hint in section 2.2 

that the trading within one week does produce most change. Many more things can be 
seen from the Fourier transformed. The spectrum of BASF shows only a slight increase for 
high frequencies. Else Figure 4 and Figure 5 show a typical 1 𝜔𝜔𝛼𝛼⁄  with 𝛼𝛼 > 0 behavior. 
This is typical for some random or better chaotic fluctuations where lower frequencies are 
more important. In the case of SAP (Figure 6) one sees no general decay of the amplitudes 
but a peak for frequencies 1 (several days)⁄ . For very low frequencies (not displayed here) 
SAP shows a 1 𝜔𝜔𝛼𝛼⁄  behavior. This means that in the long run the price of SAP adjusts to 
the underlying company value. In shorter periods of time SAP takes speculative prices 
only. This is in perfect accordance to (Appel and Grabinski 2011) who also analyzed the 
SAP stock by completely other means. 

Many more things can be said from the spectra of stock prices. However, they are 
quite individual. In chapter 4 we will give one analysis which may be used for all stocks 
universally which is in accordance to (Schädler 2018) and (Schädler and Steurer 2019). 

Though formulas like in Eq. (9) are quite long, all calculations did not consume much 
computing power. On an ordinary laptop a CPU time of five to ten minutes will produce 
Figure 4, Figure 5, or Figure 6 and also the complete formula in Eq. (9). To evaluate the 
Fourier transformed �𝑓𝑓(𝜔𝜔)� one need an integration instead of summation in Eq. (8). This 
will be the topic of chapter 4. The principle is simple but the numerical integration will 
consume lots of CPU time of typically six weeks. Parallelization can reduce it accordingly. 

Figure 6. �𝑓𝑓(𝜔𝜔)�of SAP SE for frequencies of 1 (50 days)⁄  to 1 (1 day)⁄  

Figure 5. �𝑓𝑓(𝜔𝜔)� of BASF SE for frequencies of 1 (50 days)⁄  to 1 (1 day)⁄  
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With our means we still needed five days. Therefore we evaluated the three stocks of 
BASF SE, SAP SE, and Deutsche Bank AG only. 

 

4. Quantitative analysis of the Fourier transformed 
As the Fourier transformed �𝑓𝑓(𝜔𝜔)� shows the speculative behavior by an undue in-

crease at some frequencies (expected range here 1 (5 days)⁄  to 1 (1 day)⁄ ) one should 
consider the following function 

𝐹𝐹(𝜔𝜔) = � 𝑑𝑑𝜔𝜔′� 𝑓𝑓(𝜔𝜔′)�

𝜔𝜔 𝑑𝑑𝑑𝑑𝑑𝑑⁄

0

 (10) 

in the rage 0 ≤ 𝜔𝜔 ≤ 2𝜋𝜋. As 𝐹𝐹(𝜔𝜔) is the “sum of the amplitudes” up to 𝜔𝜔, an undue in-
crease at some 𝜔𝜔 would unveil the frequency where speculation takes place. As the rela-
tive rather than absolute amplitudes are essential, one should normalize 𝐹𝐹(2𝜋𝜋) to 1. This 
is easily done by dividing 𝐹𝐹(𝜔𝜔) of Eq. (10) by 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑑𝑑𝜔𝜔′� 𝑓𝑓(𝜔𝜔′)�

2𝜋𝜋 𝑑𝑑𝑎𝑎𝑎𝑎⁄

0

 (11) 

which will make the results for different stocks comparable. Needless to say that the inte-
grals in Eqs. (10) and (11) cannot be executed analytically. Of course they can be calculated 
numerically. As �𝑓𝑓(𝜔𝜔)� shows 5,050 oscillation, a sufficient accuracy is given by dividing 
each oscillation into 1,000 parts. So the numerical integration is essentially performed by 
inserting 5,050,000 values between 0 and 2𝜋𝜋 𝑑𝑑𝑑𝑑𝑑𝑑⁄  into �𝑓𝑓(𝜔𝜔)�. It will lead to 5,050,000 
functional values. Adding them up in accordance to the integration limits will solve the 
integrals numerically. As stated, �𝑓𝑓(𝜔𝜔)� is a simple but very long formula, cf. Eq. (9). Get-
ting the over five million functional values consumes roughly six weeks of CPU time. 

The normalized plot of 𝐹𝐹(𝜔𝜔) for SAP is displayed in Figure 7. On this scale there is 
hardly anything unusual. However, displaying frequencies of between 1 (50 days)⁄  and 

1 (1 day)⁄ , will lead to the graphics of Figure 8. On this scale the summed-up amplitudes 
are increasing almost linear which is natural as for high frequencies the slope in Figure 7 

Figure 7. Normalized plot of 𝐹𝐹(𝜔𝜔) from Eq. (10) for SAP 
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is fairly low. In the high frequency range of Figure 8, 10 % of the displayed frequency 
range accumulated to the last 30 % of the functional value of 𝐹𝐹(𝜔𝜔). 

The same can be done for Deutsche Bank AG (DB). The result is displayed in Figure 

9 Compared to SAP the effect is much smaller. But in the frequency around 1 �25 days�⁄  
there is an increase. It is still a frequency range were the conserved value of a company 
should not change as in five weeks it is hardly possible to change the value of a company. 
So this is also a hint of speculation but probably not within Deutsche Bank itself. As 
Deutsche Bank is a lender and investor in many companies like SAP, it is probably a 
smeared-out effect from underlying companies. 

Figure 8. Normalized plot of 𝐹𝐹(𝜔𝜔) for SAP for frequencies 1 �50 days�⁄  to 1 �1 day�⁄  

Figure 9. Normalized plot of 𝐹𝐹(𝜔𝜔) for DB for frequencies 1 �50 days�⁄  to 1 �1 day�⁄  
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As a last stock we consider BASF. In Figure 10 one can see almost no effect like before. 
Its looks like in Figure 7 where the entire frequency range has been displayed. This is in 
accordance with Figure 5 and the comment under it. BASF is a company producing goods 
which are needed especially for other companies. There is little room for speculation 
whether its products become into fashion or not. 

Just for completeness, a ten times zoomed scale is displayed in Figure 11. One sees a 
disproportional increase for frequencies of 1 1( day)⁄  and slightly below. BASF does 
show almost no speculation by the analysis of Fourier transformation. That does not mean 
that the BASF stock is a safe bet. As BASF uses lots of energy like gas and oil as a raw 

Figure 10. Normalized plot of 𝐹𝐹(𝜔𝜔) for BASF for frequencies 1 �50 days�⁄  to 1 �1 day�⁄  

Figure 11. Normalized plot of 𝐹𝐹(𝜔𝜔) for BASF for frequencies 1 �5 days�⁄  to 1 �1 day�⁄  
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material, its value will increase or decrease with the energy market which is highly vola-
tile. However, BASF is using hedging to be independent of short-term price fluctuations 
in the energy market. Therefore the Fourier analysis focusing on the frequencies of 
changes does not show any unusual things. 

Before closing this section we will compare our findings to the ones of (Schädler 2018) 
and also say a few words about the difference between Fourier analysis and volatility. 

For the stocks considered here, (Schädler 2018) found the following results which are 
summarized in Table 2. We found that SAP is most irrational, BASF least and Deutsche 

Bank in between. Compared to the results of Table 2, SAP and Deutsche Bank changed 
places. Furthermore, BASF showed almost no irratonality in our analysis. Please note that 
this has to do with the method (Schädler 2018) used and its flaws mentioned in section 
2.1. The frequency range considered here was not considered. So it is impossible that 
(Schädler 2018) has found any of our results. 

There is also a column about volatility in Table 2. The results for volatility are in 
accordance with our results from Fourier transformation. Volatility is related to findings 
by a Fourier transformation but it is far from being identical. Volatility measures changes 
in price over an entire period. We here focused on short term (high frequency) changes. 
So the advantage of Fourier transformation is to measure a spectrum of changes. 
Sometimes volatility is measured on different time scales (monthly, annual,…). This goes 
to the direction of our analysis. However, volativity must always analyze some time 
period which has enough results to perform statistics or calculate a meaningful standard 
deviation. With our analysis the Fourier transformed 𝑓𝑓(𝜔𝜔) containes all time scales. The 
limit in our approach is only that the smalles frequenciy is 1 (1 day)⁄  as we considered 
dayly price only. But this is of course not a principle limition. Had we take prices every 
second, the limit were 1 (1 second)⁄  

 

5. Conclusions and future work 
Classically it is assumed that stocks and the like adjust to their true value by random 

fluctuation in price (Fama 1970). The height of these fluctuations measures the risk in-
volved as one can never be sure whether the current price is over or under the true value. 
So it comes natural to measure volatility as it is the average quadratic deviation from the 
mean. 

From (Appel and Grabinski 2011), (Schefczyk 2012), and (Klinkova and Grabinski 
2017b) we know that the fluctuations are chaotic rather than random. This makes averages 
and other statistical operations at least doubtful (Grabinski and Klinkova 2019). Further-
more random fluctuations force a Gaussian distribution. At least from (Grabinski and 
Klinkova 2020) we know that even the so-called fat tail is due to a wrongly applied statis-
tics. Even speaking of fluctuations (being them random or chaotic) around a true value is 
misleading. We have a conserved value (Klinkova and Grabinski 2017a) plus a speculative 
part which fluctuates. 

We investigated in analyzing (fluctuating) prices of financial products via Fourier 
transformation. In doing so all the above is not relevant. As the (conserved) value changes 
slowly only, short term price changes cannot have its origin in a change of conserved 
value. Fourier transformation measures the amount of change over the frequencies. The 
price function 𝑓𝑓(𝑡𝑡) is transformed into 𝑓𝑓(𝜔𝜔) the so-called Fourier transformed, cf. Eqs. 
(3) and (4). 

Company Irrationality Volatility 
BASF SE 77.8% 23.7% 
SAP SE 79.2% 32.5% 
Deutsche Bank AG 82.8% 33.1% 

  

Table 2. Results from (Schädler 2018) 
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We scrutinized just three stocks of SAP, Deutsche Bank, and BASF. We did it to prove 
the principle and to uncover the flaws of (Schädler 2018). As a next step one should scru-
tinize the waste amount of stocks (Schädler 2018) and (Schädler and Steurer 2019) ana-
lyzed. 

There are two other ways to improve this publication. Firstly, one should try to sim-
plify our method as it currently consumes lots of computing power. There appears to be 
little chance to do this directly. Most likely the very long formula for �𝑓𝑓(𝜔𝜔)� (e.g. Eq. (9)) 
cannot be simplified. Even a “brute force” attempt to simplify�𝑓𝑓(𝜔𝜔)� failed. We used e.g. 
“FullSimplify” in Mathematica. We had to abort it after over 50 hours of CPU time and 
2.6 TB of RAM in the process. But instead of using �𝑓𝑓(𝜔𝜔)� one may use its real or imagi-
nary part only. It is of course not correct. However, if it would lead to similar results in 
the three cases presented here, one should scrutinize it further. The formula for the real or 
imaginary part of 𝑓𝑓(𝜔𝜔) is much simpler than �𝑓𝑓(𝜔𝜔)� from Eq. (9). It is even possible to 
integrate it analytically. (The main obstacle will be that the real and imaginary show neg-
ative and positive values and its integral is essentially zero. Taking the absolute value is 
of no help as it would lead to little improvement compared to considering �𝑓𝑓(𝜔𝜔)�) 

Secondly, we analyzed �𝑓𝑓(𝜔𝜔)� in a not standard way. We showed successfully that 
it has too high values for high frequencies but we did not have a measure for it. Further-
more, probably much more can be extracted from �𝑓𝑓(𝜔𝜔)�. But currently we can only dis-
cuss it. So we have no quantitative comparison between different stocks. 

It is an interesting question what a Fourier analysis of crypto currencies will show. 
There is a waste amount of newer publications analyzing risk in cryptocurrencies, e.g. 
(Almeida et al. 2023), (Bowala and Sigh 2022), and (Irfan et al. 2023). Analyzing crypto-
currencies makes the classical analysis via volatility, etc. at least questionable. The main 
reason is that cryptocurrencies do not have a conserved value. So there is no adjustment 
towards it and no fluctuations around it, be them random or chaotic. A Fourier analysis 
of these prices will reveal a frequency spectrum where no frequency is per se “abnormal.” 
But it may or may not show a “typical” frequency. The result is important to understand 
how people speculate with crypto currencies. 
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