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The Statistics of Sharpe Ratios
Andrew W. Lo

The building blocks of the Sharpe ratio—expected returns and volatilities—
are unknown quantities that must be estimated statistically and are,
therefore, subject to estimation error. This raises the natural question: How
accurately are Sharpe ratios measured? To address this question, I derive
explicit expressions for the statistical distribution of the Sharpe ratio using
standard asymptotic theory under several sets of assumptions for the
return-generating process—independently and identically distributed
returns, stationary returns, and with time aggregation. I show that
monthly Sharpe ratios cannot be annualized by multiplying by  except
under very special circumstances, and I derive the correct method of
conversion in the general case of stationary returns. In an illustrative
empirical example of mutual funds and hedge funds, I find that the annual
Sharpe ratio for a hedge fund can be overstated by as much as 65 percent
because of the presence of serial correlation in monthly returns, and once
this serial correlation is properly taken into account, the rankings of hedge
funds based on Sharpe ratios can change dramatically.

ne of the most commonly cited statistics in
financial analysis is the Sharpe ratio, the
ratio of the excess expected return of an

investment to its return volatility or standard devi-
ation. Originally motivated by mean–variance
analysis and the Sharpe–Lintner Capital Asset Pric-
ing Model, the Sharpe ratio is now used in many
different contexts, from performance attribution to
tests of market efficiency to risk management.1

Given the Sharpe ratio’s widespread use and the
myriad interpretations that it has acquired over the
years, it is surprising that so little attention has been
paid to its statistical properties. Because expected
returns and volatilities are quantities that are gen-
erally not observable, they must be estimated in
some fashion. The inevitable estimation errors that
arise imply that the Sharpe ratio is also estimated
with error, raising the natural question: How accu-
rately are Sharpe ratios measured?

In this article, I provide an answer by deriving
the statistical distribution of the Sharpe ratio using
standard econometric methods under several dif-
ferent sets of assumptions for the statistical behav-
ior of the return series on which the Sharpe ratio is
based. Armed with this statistical distribution, I

show that confidence intervals, standard errors,
and hypothesis tests can be computed for the esti-
mated Sharpe ratio in much the same way that they
are computed for regression coefficients such as
portfolio alphas and betas. 

The accuracy of Sharpe ratio estimators hinges
on the statistical properties of returns, and these
properties can vary considerably among portfolios,
strategies, and over time. In other words, the
Sharpe ratio estimator’s statistical properties typi-
cally will depend on the investment style of the
portfolio being evaluated. At a superficial level, the
intuition for this claim is obvious: The performance
of more volatile investment strategies is more dif-
ficult to gauge than that of less volatile strategies.
Therefore, it should come as no surprise that the
results derived in this article imply that, for exam-
ple, Sharpe ratios are likely to be more accurately
estimated for mutual funds than for hedge funds.

A less intuitive implication is that the time-
series properties of investment strategies (e.g.,
mean reversion, momentum, and other forms of
serial correlation) can have a nontrivial impact on
the Sharpe ratio estimator itself, especially in com-
puting an annualized Sharpe ratio from monthly
data. In particular, the results derived in this article
show that the common practice of annualizing
Sharpe ratios by multiplying monthly estimates by

 is correct only under very special circum-
stances and that the correct multiplier—which
depends on the serial correlation of the portfolio’s
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returns—can yield Sharpe ratios that are consider-
ably smaller (in the case of positive serial correla-
tion) or larger (in the case of negative serial
correlation). Therefore, Sharpe ratio estimators
must be computed and interpreted in the context of
the particular investment style with which a port-
folio’s returns have been generated.

Let Rt denote the one-period simple return of
a portfolio or fund between dates t – 1 and t and
denote by µ and σ2 its mean and variance:

µ ≡ E(Rt), (1a)

and

σ2 ≡ Var(Rt). (1b)

Recall that the Sharpe ratio (SR) is defined as the
ratio of the excess expected return to the standard
deviation of return:

(2)

where the excess expected return is usually com-
puted relative to the risk-free rate, Rf. Because µ and
σ are the population moments of the distribution of
Rt , they are unobservable and must be estimated
using historical data.

Given a sample of historical returns (R1, R2, . . .,
RT), the standard estimators for these moments are
the sample mean and variance:

(3a)

and

, (3b)

from which the estimator of the Sharpe ratio 
follows immediately:

. (4)

Using a set of techniques collectively known as
“large-sample’’ or “asymptotic’’ statistical theory
in which the Central Limit Theorem is applied to
estimators such as  and , the distribution of 
and other nonlinear functions of  and  can be
easily derived.

In the next section, I present the statistical dis-
tribution of  under the standard assumption that
returns are independently and identically distrib-
uted (IID). This distribution completely character-
izes the statistical behavior of  in large samples
and allows us to quantify the precision with which

 estimates SR. But because the IID assumption is
extremely restrictive and often violated by financial

data, a more general distribution is derived in the
“Non-IID Returns” section, one that applies to
returns with serial correlation, time-varying condi-
tional volatilities, and many other characteristics of
historical financial time series. In the “Time Aggre-
gation” section, I develop explicit expressions for
“time-aggregated’’ Sharpe ratio estimators (e.g.,
expressions for converting monthly Sharpe ratio
estimates to annual estimates) and their distribu-
tions. To illustrate the practical relevance of these
estimators, I apply them to a sample of monthly
mutual fund and hedge fund returns and show that
serial correlation has dramatic effects on the annual
Sharpe ratios of hedge funds, inflating Sharpe ratios
by more than 65 percent in some cases and deflating
Sharpe ratios in other cases. 

IID Returns
To derive a measure of the uncertainty surrounding
the estimator , we need to specify the statistical
properties of Rt because these properties determine
the uncertainty surrounding the component estima-
tors  and . Although this may seem like a theo-
retical exercise best left for statisticians—not unlike
the specification of the assumptions needed to yield
well-behaved estimates from a linear regression—
there is often a direct connection between the invest-
ment management process of a portfolio and its
statistical properties. For example, a change in the
portfolio manager’s style from a small-cap value
orientation to a large-cap growth orientation will
typically have an impact on the portfolio’s volatility,
degree of mean reversion, and market beta. Even for
a fixed investment style, a portfolio’s characteristics
can change over time because of fund inflows and
outflows, capacity constraints (e.g., a microcap fund
that is close to its market-capitalization limit),
liquidity constraints (e.g., an emerging market or
private equity fund), and changes in market condi-
tions (e.g., sudden increases or decreases in volatil-
ity, shifts in central banking policy, and
extraordinary events, such as the default of Russian
government bonds in August 1998). Therefore, the
investment style and market environment must be
kept in mind when formulating the assumptions for
the statistical properties of a portfolio’s returns.

Perhaps the simplest set of assumptions that we
can specify for Rt is that they are independently and
identically distributed. This means that the proba-
bility distribution of Rt is identical to that of Rs for
any two dates t and s and that Rt and Rs are statisti-
cally independent for all t ≠ s. Although these con-
ditions are extreme and empirically implausible—
the probability distribution of the monthly return of
the S&P 500 Index in October 1987 is likely to differ
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from the probability distribution of the monthly
return of the S&P 500 in December 2000—they pro-
vide an excellent starting point for understanding
the statistical properties of Sharpe ratios. In the next
section, these assumptions will be replaced with a
more general set of conditions for returns.

Under the assumption that returns are IID and
have finite mean µ and variance σ2, it is well
known that the estimators  and  in Equation 3
have the following normal distributions in large
samples, or “asymptotically,” due to the Central
Limit Theorem:2 

(5)

where  denotes the fact that this relationship is an
asymptotic one [i.e., as T increases without bound,
the probability distributions of  and

 approach the normal distribution, with
mean zero and variances σ2 and 2σ4, respectively].
These asymptotic distributions imply that the esti-
mation error of  and  can be approximated by

(6)

where  indicates that these relations are based on
asymptotic approximations. Note that in Equation
6, the variances of both estimators approach zero as
T increases, reflecting the fact that the estimation
errors become smaller as the sample size grows. An
additional property of  and  in the special case
of IID returns is that they are statistically indepen-
dent in large samples, which greatly simplifies our
analysis of the statistical properties of functions of
these estimators (e.g., the Sharpe ratio).

Now, denote by the function g(µ,σ2) the
Sharpe ratio defined in Equation 2; hence, the
Sharpe ratio estimator is simply 
When the Sharpe ratio is expressed in this form, it
is apparent that the estimation errors in  and 
will affect  and that the nature of these
effects depends critically on the properties of the
function g. Specifically, in the “IID Returns” sec-
tion of Appendix A, I show that the asymptotic
distribution of the Sharpe ratio estimator is

 where the asymp-
totic variance is given by the following weighted
average of the asymptotic variances of  and :

(7)

The weights in Equation 7 are simply the squared
sensitivities of g with respect to µ and σ2, respec-
tively: The more sensitive g is to a particular param-
eter, the more influential its asymptotic variance
will be in the weighted average. This relationship

is reminiscent of the expression for the variance of
the weighted sum of two random variables, except
that in Equation 7, there is no covariance term. This
is due to the fact that  and  are asymptotically
independent, thanks to our simplifying assump-
tion of IID returns. In the next sections, the IID
assumption will be replaced by a more general set
of conditions on returns, in which case, the covari-
ance between  and  will no longer be zero and
the corresponding expression for the asymptotic
variance of the Sharpe ratio estimator will be some-
what more involved. 

The asymptotic variance of  given in Equa-
tion 7 can be further simplified by evaluating the
sensitivities explicitly—∂g/∂µ = 1/σ and ∂g/∂σ2 =
–(µ – Rf)/(2σ3)—and then combining terms to yield

(8)

Therefore, standard errors (SEs) for the Sharpe ratio
estimator  can be computed as

(9)

and this quantity can be estimated by substituting
 for SR. Confidence intervals for SR can also be

constructed from Equation 9; for example, the 95
percent confidence interval for SR around the esti-
mator  is simply

(10)

Table 1 reports values of Equation 9 for vari-
ous combinations of Sharpe ratios and sample
sizes. Observe that for any given sample size T,
larger Sharpe ratios imply larger standard errors.
For example, in a sample of 60 observations, the
standard error of the Sharpe ratio estimator is 0.188
when the true Sharpe ratio is 1.50 but is 0.303 when
the true Sharpe ratio is 3.00. This implies that the
performance of investments such as hedge funds,
for which high Sharpe ratios are one of the primary
objectives, will tend to be less precisely estimated.
However, as a percentage of the Sharpe ratio, the
standard error given by Equation 9 does approach
a finite limit as SR increases since

(11)

as SR increases without bound. Therefore, the
uncertainty surrounding the IID Sharpe ratio esti-
mator will be approximately the same proportion
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of the Sharpe ratio for higher Sharpe ratio invest-
ments with the same number of observations T.

We can develop further intuition for the impact
of estimation errors in  and  on the Sharpe ratio
by calculating the proportion of asymptotic vari-
ance that is attributable to  versus . From Equa-
tion 7, the fraction of VIID due to estimation error
in  versus  is simply 

(12a)

and

(12b)

For a small Sharpe ratio, such as 0.25, this
proportion—which depends only on the true Sharpe
ratio—is 97.0 percent, indicating that most of the
variability in the Sharpe ratio estimator is a result of
variability in . However, for higher Sharpe ratios,
the reverse is true: For SR = 2.00, only 33.3 percent
of the variability of  comes from , and for a
Sharpe ratio of 3.00, only 18.2 percent of the estima-
tor error of  is attributable to .

Non-IID Returns
Many studies have documented various violations
of the assumption of IID returns for financial secu-
rities;3 hence, the results of the previous section
may be of limited practical value in certain circum-
stances. Fortunately, it is possible to derive similar
results under more general conditions, conditions
that allow for serial correlation, conditional het-
eroskedasticity, and other forms of dependence
and heterogeneity in returns. In particular, if

returns satisfy the assumption of “stationarity,”
then a version of the Central Limit Theorem still
applies to most estimators and the corresponding
asymptotic distribution can be derived. The formal
definition of stationarity is that the joint probability
distribution  of an arbitrary col-
lection of returns  does not change
if all the dates are incremented by the same number
of periods; that is, 

(13)

for all k. Such a condition implies that mean µ and
variance σ2 (and all higher moments) are constant
over time but otherwise allows for quite a broad set
of dynamics for Rt, including serial correlation,
dependence on such factors as the market portfolio,
time-varying conditional volatilities, jumps, and
other empirically relevant phenomena.

Under the assumption of stationarity,4 a ver-
sion of the Central Limit Theorem can still be
applied to the estimator . However, in this case,
the expression for the variance of  is somewhat
more complex because of the possibility of depen-
dence between the components  and . In the
“Non-IID Returns” section of Appendix A, I show
that the asymptotic distribution can be derived by
using a “robust’’ estimator—an estimator that is
effective under many different sets of assumptions
for the statistical properties of returns—to estimate
the Sharpe ratio.5 In particular, I use a generalized
method of moments (GMM) estimator to estimate 
and , and the results of Hansen (1982) can be used
to obtain the following asymptotic distribution: 

(14)

Table 1. Asymptotic Standard Errors of Sharpe Ratio Estimators for 
Combinations of Sharpe Ratio and Sample Size

Sample Size, T

SR 12 24 36 48 60 125 250 500

0.50 0.306 0.217 0.177 0.153 0.137 0.095 0.067 0.047

0.75 0.327 0.231 0.189 0.163 0.146 0.101 0.072 0.051

1.00 0.354 0.250 0.204 0.177 0.158 0.110 0.077 0.055

1.25 0.385 0.272 0.222 0.193 0.172 0.119 0.084 0.060

1.50 0.421 0.298 0.243 0.210 0.188 0.130 0.092 0.065

1.75 0.459 0.325 0.265 0.230 0.205 0.142 0.101 0.071

2.00 0.500 0.354 0.289 0.250 0.224 0.155 0.110 0.077

2.25 0.542 0.384 0.313 0.271 0.243 0.168 0.119 0.084

2.50 0.586 0.415 0.339 0.293 0.262 0.182 0.128 0.091

2.75 0.631 0.446 0.364 0.316 0.282 0.196 0.138 0.098

3.00 0.677 0.479 0.391 0.339 0.303 0.210 0.148 0.105

Note: Returns are assumed to be IID, which implies VIID = 1 + 1/2SR2.
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where the definitions of ∂g/∂� and � and a method
for estimating them are given in the second section
of Appendix A. Therefore, for non-IID returns, the
standard error of the Sharpe ratio can be estimated by

(15)

and confidence intervals for SR can be constructed
in a similar fashion to Equation 10.

Time Aggregation
In many applications, it is necessary to convert
Sharpe ratio estimates from one frequency to
another. For example, a Sharpe ratio estimated from
monthly data cannot be directly compared with one
estimated from annual data; hence, one statistic
must be converted to the same frequency as the other
to yield a fair comparison. Moreover, in some cases,
it is possible to derive a more precise estimator of an
annual quantity by using monthly or daily data and
then performing time aggregation instead of esti-
mating the quantity directly using annual data.6

In the case of Sharpe ratios, the most common
method for performing such time aggregation is to
multiply the higher-frequency Sharpe ratio by the
square root of the number of periods contained in
the lower-frequency holding period (e.g., multiply a
monthly estimator by  to obtain an annual esti-
mator). In this section, I show that this rule of thumb
is correct only under the assumption of IID returns.
For non-IID returns, an alternative procedure must
be used, one that accounts for serial correlation in
returns in a very specific manner.

IID Returns. Consider first the case of IID
returns. Denote by Rt(q) the following q-period
return:

(16)

where I have ignored the effects of compounding
for computational convenience.7 Under the IID
assumption, the variance of Rt(q) is directly propor-
tional to q; hence, the Sharpe ratio satisfies the
simple relationship:

(17)

Despite the fact that the Sharpe ratio may seem
to be “unitless’’ because it is the ratio of two quan-
tities with the same units, it does depend on the
timescale with respect to which the numerator and
denominator are defined. The reason is that the

numerator increases linearly with aggregation
value q whereas the denominator increases as the
square root of q under IID returns; hence, the ratio
will increase as the square root of q, making a longer-
horizon investment seem more attractive. This
interpretation is highly misleading and should not
be taken at face value. Indeed, the Sharpe ratio is not
a complete summary of the risks of a multiperiod
investment strategy and should never be used as the
sole criterion for making an investment decision.8

The asymptotic distribution of (q) follows
directly from Equation 17 because (q) is propor-
tional to SR:

(18)

Non-IID Returns. The relationship between
SR and SR(q) is somewhat more involved for non-
IID returns because the variance of Rt(q) is not just
the sum of the variances of component returns but
also includes all the covariances. Specifically, under
the assumption that returns Rt are stationary,

(19)

where ρk ≡ Cov(Rt, Rt–k)/Var(Rt) is the kth-order
autocorrelation of Rt.9 This yields the following
relationship between SR and SR(q):

(20)

Note that Equation 20 reduces to Equation 17 if all
autocorrelations ρk are zero, as in the case of IID
returns. However, for non-IID returns, the adjust-
ment factor for time-aggregated Sharpe ratios is
generally not  but a more complicated function
of the first q – 1 autocorrelations of returns.

Example: First-Order Autoregressive
Returns. To develop some intuition for the
potential impact of serial correlation on the Sharpe
ratio, consider the case in which returns follow a
first-order autoregressive process or “AR(1)”:

Rt = µ + ρ(Rt–1 – µ) + εt,  –1 < ρ < 1, (21)

where εt is IID with mean zero and variance σε
2.

In this case, the return in period t can be forecasted
to some degree by the return in period t – 1, and
this “autoregression’’ leads to serial correlation at
all lags. In particular, Equation 21 implies that the
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kth-order autocorrelation coefficient is simply ρk;
hence, the scale factor in Equation 20 can be eval-
uated explicitly as

(22)

Table 2 presents values of η(q) for various
values of ρ and q; the row corresponding to ρ = 0
percent is the IID case in which the scale factor is
simply . Note that for each holding-period q,
positive serial correlation reduces the scale factor
below the IID value and negative serial correlation
increases it. The reason is that positive serial corre-
lation implies that the variance of multiperiod
returns increases faster than holding-period q;
hence, the variance of Rt(q) is more than q times the
variance of Rt, yielding a larger denominator in the
Sharpe ratio than the IID case. For returns with
negative serial correlation, the opposite is true: The
variance of Rt(q) is less than q times the variance of
Rt, yielding a smaller denominator in the Sharpe
ratio than the IID case. For returns with significant
serial correlation, this effect can be substantial. For
example, the annual Sharpe ratio of a portfolio with
a monthly first-order autocorrelation of –20 percent
is 4.17 times the monthly Sharpe ratio, whereas the

scale factor is 3.46 in the IID case and 2.88 when the
monthly first-order autocorrelation is 20 percent. 

These patterns are summarized in Figure 1, in
which η(q) is plotted as a function of q for five
values of ρ. The middle (ρ = 0) curve corresponds
to the standard scale factor , which is the correctη q( ) q 1

2ρ
1 ρ–
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1 ρq
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q 1 ρ–( )
--------------------–

 
 
 

+

–1/2

.=

q

Figure 1. Scale Factors of Time-Aggregated 
Sharpe Ratios When Returns Follow 
an AR(1) Process: For � = –0.50, –0.25, 
0, 0.25, and 0.50
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Table 2. Scale Factors for Time-Aggregated Sharpe Ratios When Returns 
Follow an AR(1) Process for Various Aggregation Values and First-
Order Autocorrelations

ρ
(%)

Aggregation Value, q

2 3 4 6 12 24 36 48 125 250

90 1.03 1.05 1.07 1.10 1.21 1.41 1.60 1.77 2.67 3.70

80 1.05 1.10 1.14 1.21 1.43 1.81 2.14 2.42 3.79 5.32

70 1.08 1.15 1.21 1.33 1.65 2.19 2.62 3.00 4.75 6.68

60 1.12 1.21 1.30 1.46 1.89 2.55 3.08 3.53 5.63 7.94

50 1.15 1.28 1.39 1.60 2.12 2.91 3.53 4.06 6.49 9.15

40 1.20 1.35 1.49 1.75 2.36 3.27 3.98 4.58 7.35 10.37

30 1.24 1.43 1.60 1.91 2.61 3.65 4.44 5.12 8.23 11.62

20 1.29 1.52 1.73 2.07 2.88 4.04 4.93 5.68 9.14 12.92

10 1.35 1.62 1.86 2.25 3.16 4.45 5.44 6.28 10.12 14.31

0 1.41 1.73 2.00 2.45 3.46 4.90 6.00 6.93 11.18 15.81

–10 1.49 1.85 2.16 2.66 3.80 5.39 6.61 7.64 12.35 17.47

–20 1.58 1.99 2.33 2.90 4.17 5.95 7.31 8.45 13.67 19.35

–30 1.69 2.13 2.53 3.17 4.60 6.59 8.10 9.38 15.20 21.52

–40 1.83 2.29 2.75 3.48 5.09 7.34 9.05 10.48 17.01 24.11

–50 2.00 2.45 3.02 3.84 5.69 8.26 10.21 11.84 19.26 27.31

–60 2.24 2.61 3.37 4.30 6.44 9.44 11.70 13.59 22.19 31.50

–70 2.58 2.76 3.86 4.92 7.45 11.05 13.77 16.04 26.33 37.43

–80 3.16 2.89 4.66 5.91 8.96 13.50 16.98 19.88 32.96 47.02

–90 4.47 2.97 6.47 8.09 12.06 18.29 23.32 27.61 46.99 67.65
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factor when the correlation coefficient is zero. The
curves above the middle one correspond to positive
values of ρ, and those below the middle curve
correspond to negative values of ρ. It is apparent
that serial correlation has a nontrivial effect on the
time aggregation of Sharpe ratios. 

The General Case. More generally, using the
expression for (q) in Equation 20, we can con-
struct an estimator of SR(q) from estimators of the
first q – 1 autocorrelations of Rt under the assump-
tion of stationary returns. As in the “Non-IID
Return” section, we can use GMM to estimate these
autocorrelations as well as their asymptotic joint
distribution, which can then be used to derive the
following limiting distribution of (q): 

(23)

where the definitions of ∂g/∂� and � and formulas
for estimating them are given in the “Time Aggre-
gation” section of Appendix A. The standard error
of (q) is then given by 

(24)

and confidence intervals can be constructed as in
Equation 10.

Using  When Returns Are IID.

Although the robust estimator for SR(q) is the
appropriate estimator to use when returns are
serially correlated or non-IID in other ways, there
is a cost: additional estimation error induced by
the autocovariance estimator, , which manifests
itself in the asymptotic variance, , of

(q). To develop a sense for the impact of esti-
mation error on , consider the robust
estimator when returns are, in fact, IID. In that
case, γk = 0 for all k > 0 but because the robust
estimator is a function of estimators , the estima-
tion errors of the autocovariance estimators will
have an impact on . In particular, in the
“Using  When Returns Are IID” section
of Appendix A, I show that for IID returns, the
asymptotic variance of robust estimator (q) is
given by

(25)

where ν3 ≡ E[(Rt – µ)3] and ν4 ≡ E[(Rt – µ)4] are the
return’s third and fourth moments, respectively.
Now suppose that returns are normally distributed.
In that case, ν3 = 0 and ν4 = 3σ4, which implies that

(26)

The second term on the right side of Equation 26
represents the additional estimation error intro-
duced by the estimated autocovariances in the
more general estimator given in Equation A18 in
Appendix A. By setting q = 1 so that no time aggre-
gation is involved in the Sharpe ratio estimator
(hence, no autocovariances enter into the estima-
tor), the expression in Equation 26 reduces to the
IID case given in Equation 18.

The asymptotic relative efficiency of (q) can
be evaluated explicitly by computing the ratio of
VGMM(q) to VIID(q) in the case of IID normal returns:

(27)

and Table 3 reports these ratios for various combi-
nations of Sharpe ratios and aggregation values q.
Even for small aggregation values, such as q = 2,
asymptotic variance VGMM(q) is significantly higher
than VIID(q)—for example, 33 percent higher for a
Sharpe ratio of 2.00. As the aggregation value
increases, the asymptotic relative efficiency becomes
even worse as more estimation error is built into the
time-aggregated Sharpe ratio estimator. Even with
a monthly Sharpe ratio of only 1.00, the annualized
(q = 12) robust Sharpe ratio estimator has an asymp-
totic variance that is 334 percent of VIID(q). 

The values in Table 3 suggest that, unless
there is significant serial correlation in return
series Rt , the robust Sharpe ratio estimator should
not be used. A useful diagnostic to check for the
presence of serial correlation is the Ljung–Box
(1978) Q-statistic:

(28)

which is asymptotically distributed as  under
the null hypothesis of no serial correlation.10 If
Qq – 1 takes on a large value—for example, if it
exceeds the 95 percent critical value of the 
distribution—this signals significant serial corre-
lation in returns and suggests that the robust
Sharpe ratio, (q), should be used instead of

 for estimating the Sharpe ratio of q-period
returns. 
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An Empirical Example
To illustrate the potential impact of estimation error
and serial correlation in computing Sharpe ratios, I
apply the estimators described in the preceding sec-
tions to the monthly historical total returns of the 10
largest (as of February 11, 2001) mutual funds from
various start dates through June 2000 and 12 hedge
funds from various inception dates through Decem-
ber 2000. Monthly total returns for the mutual funds
were obtained from the University of Chicago’s Cen-
ter for Research in Security Prices. The 12 hedge
funds were selected from the Altvest database to
yield a diverse range of annual Sharpe ratios (from
1.00 to 5.00) computed in the standard way ( ,
where  is the Sharpe ratio estimator applied to
monthly returns), with the additional requirement
that the funds have a minimum five-year history of
returns. The names of the hedge funds have been
omitted to maintain their privacy, and I will refer to
them only by their investment styles (e.g., relative
value fund, risk arbitrage fund).11

Table 4 shows that the 10 mutual funds have
little serial correlation in returns, with p-values of
Q-statistics ranging from 13.2 percent to 80.2
percent.12 Indeed, the largest absolute level of
autocorrelation among the 10 mutual funds is the
12.4 percent first-order autocorrelation of the
Fidelity Magellan Fund. With a risk-free rate of 5/
12 percent per month, the monthly Sharpe ratios
of the 10 mutual funds range from 0.14 (Growth
Fund of America) to 0.32 (Janus Worldwide), with
robust standard errors of 0.05 and 0.11, respec-
tively. Because of the lack of serial correlation in
the monthly returns of these mutual funds, there
is little difference between the IID estimator for the

annual Sharpe ratio,  (in Table 4, ), and
the robust estimator that accounts for serial
correlation, (12). For example, even in the case
of the Fidelity Magellan Fund, which has the
highest first-order autocorrelation among the 10
mutual funds, the difference between a  of
0.73 and a (12) of 0.66 is not substantial (and
certainly not statistically significant). Note that the
robust estimator is marginally lower than the IID
estimator, indicating the presence of positive
serial correlation in the monthly returns of the
Magellan Fund. In contrast, for Washington
Mutual Investors, the IID estimate of the annual
Sharpe ratio is  = 0.60 but the robust estimate
is larger, (12) = 0.65, because of negative serial
correlation in the fund’s monthly returns (recall
that negative serial correlation implies that the
variance of the sum of 12 monthly returns is less
than 12 times the variance of monthly returns).

The robust standard errors SE3(12) with m = 3
for (12) for the mutual funds range from 0.17
(Janus) to 0.47 (Fidelity Growth and Income) and
take on similar values when m = 6, which indicates
that the robust estimator is reasonably well behaved
for this dataset. The magnitudes of the standard
errors yield 95 percent confidence intervals for
annual Sharpe ratios that do not contain 0 for any
of the 10 mutual funds. For example, the 95 percent
confidence interval for the Vanguard 500 Index
fund is 0.85 ± (1.96 × 0.26), which is (0.33, 1.36).
These results indicate Sharpe ratios for the 10
mutual funds that are statistically different from 0
at the 95 percent confidence level.

The results for the 12 hedge funds are different
in several respects. The mean returns are higher and
the standard deviations lower, implying much

Table 3. Asymptotic Relative Efficiency of Robust Sharpe Ratio Estimator 
When Returns Are IID

Aggregation Value, q

SR 2 3 4 6 12 24 36 48 125 250

0.50 1.06 1.12 1.19 1.34 1.78 2.67 3.56 4.45  10.15 19.41

0.75 1.11 1.24 1.38 1.67 2.54 4.30 6.05 7.81  19.07 37.37

1.00 1.17 1.37 1.58 2.02 3.34 6.00 8.67  11.34  28.45 56.22

1.25 1.22 1.49 1.77 2.34 4.08 7.59  11.09  14.60  37.11 73.66

1.50 1.26 1.59 1.93 2.62 4.72 8.95  13.18  17.42  44.59 88.71

1.75 1.30 1.67 2.06 2.85 5.25  10.08  14.92  19.76  50.81  101.22

2.00 1.33 1.74 2.17 3.04 5.69  11.01  16.34  21.67  55.89  111.45

2.25 1.36 1.80 2.25 3.19 6.04  11.76  17.49  23.23  60.02  119.75

2.50 1.38 1.84 2.33 3.31 6.32  12.37  18.43  24.49  63.38  126.51

2.75 1.40 1.88 2.38 3.42 6.56  12.87  19.20  25.52  66.12  132.02

3.00 1.41 1.91 2.43 3.50 6.75  13.28  19.83  26.37  68.37  136.55

Note: Asymptotic relative efficiency is given by VGMM(q)/VIID(q).
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higher Sharpe ratio estimates for hedge funds than
for mutual funds. The monthly Sharpe ratio esti-
mates, , range from 0.56 (“Fund of funds”) to 1.26
(“Convertible/option arbitrage”), in contrast to the
range of 0.14 to 0.32 for the 10 mutual funds. How-
ever, the serial correlation in hedge fund returns is
also much higher. For example, the first-order auto-
correlation coefficient ranges from –20.2 percent to
49.0 percent among the 12 hedge funds, whereas the
highest first-order autocorrelation is 12.4 percent
among the 10 mutual funds. The p-values provide a
more complete summary of the presence of serial

correlation: All but 5 of the 12 hedge funds have
p-values less than 5 percent, and several are less than
1 percent.

The impact of serial correlation on the annual
Sharpe ratios of hedge funds is dramatic. When the
IID estimator, , is used for the annual Sharpe
ratio, the “Convertible/option arbitrage” fund has
a Sharpe ratio estimate of 4.35, but when serial
correlation is properly taken into account by

(12), the estimate drops to 2.99, implying that the
IID estimator overstates the annual Sharpe ratio by
45 percent. The annual Sharpe ratio estimate for the

Table 4. Monthly and Annual Sharpe Ratio Estimates for a Sample of Mutual Funds and Hedge Funds

Start 
Date T (%) (%) (%) (%) (%)

p-Value 
of Q11

(%)

Monthly Annual

Fund SE3 SE3(12) SE6(12)

Mutual funds

Vanguard 500 Index 10/76  286 1.30 4.27 –4.0 –6.6 –4.9 64.5 0.21 0.06 0.72 0.85 0.26 0.25

Fidelity Magellan 1/67  402 1.73 6.23 12.4 –2.3 –0.4 28.6 0.21 0.06 0.73 0.66 0.20 0.21

Investment Company 
of America 1/63  450 1.17 4.01 1.8 –3.2 –4.5 80.2 0.19 0.05 0.65 0.71 0.22 0.22

Janus 3/70  364 1.52 4.75 10.5 –0.0 –3.7 58.1 0.23 0.06 0.81 0.80 0.17 0.17

Fidelity Contrafund 5/67  397 1.29 4.97 7.4 –2.5 –6.8 58.2 0.18 0.05 0.61 0.67 0.23 0.23

Washington
Mutual Investors 1/63  450 1.13 4.09 –0.1 –7.2 –2.6 22.8 0.17 0.05 0.60 0.65 0.20 0.20

Janus Worldwide 1/92  102 1.81 4.36 11.4 3.4 –3.8 13.2 0.32 0.11 1.12 1.29 0.46 0.37

Fidelity Growth and 
Income 1/86  174 1.54 4.13 5.1 –1.6 –8.2 60.9 0.27 0.09 0.95 1.18 0.47 0.40

American Century 
Ultra 12/81  223 1.72 7.11 2.3 3.4 1.4 54.5 0.18 0.07 0.64 0.71 0.27 0.25

Growth Fund of 
America 7/64  431 1.18 5.35 8.5 –2.7 –4.1 45.4 0.14 0.05 0.50 0.49 0.19 0.20

Hedge funds

Convertible/option 
arbitrage 5/92  104 1.63 0.97 42.6 29.0 21.4 0.0 1.26 0.28 4.35 2.99 1.04 1.11

Relative value 12/92  97 0.66 0.21 25.9 19.2 –2.1 4.5 1.17 0.17 4.06 3.38 1.16 1.07

Mortgage-backed 
securities 1/93  96 1.33 0.79 42.0 22.1 16.7 0.1 1.16 0.24 4.03 2.44 0.53 0.54

High-yield debt 6/94  79 1.30 0.87 33.7 21.8 13.1 5.2 1.02 0.27 3.54 2.25 0.74 0.72

Risk arbitrage A 7/93  90 1.06 0.69 –4.9  –10.8 6.9 30.6 0.94 0.20 3.25 3.83 0.87 0.85

Long–short equities 7/89  138 1.18 0.83  –20.2 24.6 8.7 0.1 0.92 0.06 3.19 2.32 0.35 0.37

Multistrategy A 1/95  72 1.08 0.75 48.9 23.4 3.3 0.3 0.89 0.40 3.09 2.18 1.14 1.19

Risk arbitrage B 11/94  74 0.90 0.77 –4.9 2.5 –8.3 96.1 0.63 0.14 2.17 2.47 0.79 0.77

Convertible arbitrage A 9/92  100 1.38 1.60 33.8 30.8 7.9 0.8 0.60 0.18 2.08 1.43 0.44 0.45

Convertible arbitrage B 7/94  78 0.78 0.62 32.4 9.7 –4.5 23.4 0.60 0.18 2.06 1.67 0.68 0.62

Multistrategy B 6/89  139 1.34 1.63 49.0 24.6 10.6 0.0 0.57 0.16 1.96 1.17 0.25 0.25

Fund of funds 10/94  75 1.68 2.29 29.7 21.1 0.9 23.4 0.56 0.19 1.93 1.39 0.67 0.70

Note: For the mutual fund sample, monthly total returns from various start dates through June 2000; for the hedge fund sample, various
start dates through December 2000. The term  denotes the kth autocorrelation coefficient, and Q11 denotes the Ljung–Box Q-statistic,
which is asymptotically  under the null hypothesis of no serial correlation.  denotes the usual Sharpe ratio estimator, ,
which is based on monthly data; Rf is assumed to be 5/12 percent per month; and (12) denotes the annual Sharpe ratio estimator
that takes into account serial correlation in monthly returns. All standard errors are based on GMM estimators using the Newey–West
(1982) procedure with truncation lag m = 3 for entries in the SE3 and SE3(12) columns and m = 6 for entries in the SE6(12) column.
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“Mortgage-backed securities” fund drops from 4.03
to 2.44 when serial correlation is taken into account,
implying an overstatement of 65 percent. However,
the annual Sharpe ratio estimate for the “Risk arbi-
trage A” fund increases from 3.25 to 3.83 because of
negative serial correlation in its monthly returns.

The sharp differences between the annual IID
and robust Sharpe ratio estimates underscore the
importance of correctly accounting for serial cor-
relation in analyzing the performance of hedge
funds. Naively estimating the annual Sharpe ratios
by multiplying  by  will yield the rank
ordering given in the  column of Table 4,
but once serial correlation is taken into account, the
rank ordering changes to 3, 2, 5, 7, 1, 6, 8, 4, 10, 9,
12, and 11.

The robust standard errors for the annual
robust Sharpe ratio estimates of the 12 hedge funds
range from 0.25 to 1.16, which although larger than
those in the mutual fund sample, nevertheless
imply 95 percent confidence intervals that gener-
ally do not include 0. For example, even in the case
of the “Multistrategy B” fund, which has the lowest
robust Sharpe ratio estimate (1.17), its 95 percent
confidence interval is 1.17 ± 1.96 × 0.25, which is
(0.68, 1.66). These statistically significant Sharpe
ratios are consistent with previous studies that doc-
ument the fact that hedge funds do seem to exhibit
statistically significant excess returns.13 The simi-
larity of the standard errors between the m = 3 and
m = 6 cases for the hedge fund sample indicates that
the robust estimator is also well behaved in this
case, despite the presence of significant serial cor-
relation in monthly returns.

In summary, the empirical examples illustrate
the potential impact that serial correlation can have
on Sharpe ratio estimates and the importance of
properly accounting for departures from the stan-
dard IID framework. Robust Sharpe ratio estima-
tors contain significant additional information
about the risk–reward trade-offs for active invest-
ment products, such as hedge funds; more detailed
analysis of the risks and rewards of hedge fund
investments is performed in Getmansky, Lo, and
Makarov (2002) and Lo (2001).

Conclusion
Although the Sharpe ratio has become part of the
canon of modern financial analysis, its applications
typically do not account for the fact that it is an
estimated quantity, subject to estimation errors that
can be substantial in some cases. The results pre-
sented in this article provide one way to gauge the
accuracy of these estimators, and it should come as
no surprise that the statistical properties of Sharpe
ratios depend intimately on the statistical proper-
ties of the return series on which they are based.
This suggests that a more sophisticated approach
to interpreting Sharpe ratios is called for, one that
incorporates information about the investment
style that generates the returns and the market
environment in which those returns are generated.
For example, hedge funds have very different
return characteristics from the characteristics of
mutual funds; hence, the comparison of Sharpe
ratios between these two investment vehicles can-
not be performed naively. In light of the recent
interest in alternative investments by institutional
investors—investors that are accustomed to stan-
dardized performance attribution measures such
as the annualized Sharpe ratio—there is an even
greater need to develop statistics that are consistent
with a portfolio’s investment style.

The empirical example underscores the practi-
cal relevance of proper statistical inference for
Sharpe ratio estimators. Ignoring the impact of serial
correlation in hedge fund returns can yield annual-
ized Sharpe ratios that are overstated by more than
65 percent, understated Sharpe ratios in the case of
negatively serially correlated returns, and inconsis-
tent rankings across hedge funds of different styles
and objectives. By using the appropriate statistical
distribution for quantifying the performance of each
return history, the Sharpe ratio can provide a more
complete understanding of the risks and rewards of
a broad array of investment opportunities.
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Chris Jakob, Laurel Kenner, Frank Linet, Jon Markman,
Victor Niederhoffer, Dan O’Reilly, Bill Sharpe, and
Jonathan Taylor for helpful comments and discussion.
Research support from AlphaSimplex Group is grate-
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Appendix A. Asymptotic Distributions of Sharpe Ratio Estimators
The first section of this appendix presents results for IID returns, and the second section presents
corresponding results for non-IID returns. Results for time-aggregated Sharpe ratios are reported in the
third section, and in the final section, the asymptotic variance, VGMM(q), of the time-aggregated robust
estimator, (q), is derived for the special case of IID returns. 

Throughout the appendix, the following conventions are maintained: (1) all vectors are column vectors
unless otherwise indicated; (2) vectors and matrixes are always typeset in boldface (i.e., X and µ are scalars
and X and � are vectors or matrixes).

IID Returns
To derive an expression for the asymptotic distribution of , we must first obtain the asymptotic joint
distribution of  and . Denote by  the column vector  and let � denote the corresponding
column vector of population values . If returns are IID, it is a well-known consequence of the Central
Limit Theorem that the asymptotic distribution of  is given by (see White):

(A1)

where the notation  indicates that this is an asymptotic approximation. Because the Sharpe ratio estimator
 can be written as a function  of , its asymptotic distribution follows directly from Taylor’s theorem

or the so-called delta method (see, for example, White):

(A2)

In the case of the Sharpe ratio, g(.) is given by Equation 2; hence,

(A3)

which yields the following asymptotic distribution for :

(A4)

Non-IID Returns
Denote by Xt the vector of period-t returns and lags ( Rt Rt–1 . . . Rt–q+1 )′ and let (Xt) be a stochastic process
that satisfies the following conditions: 

H1: {Xt : t ∈ (–∞, ∞)} is stationary and ergodic;

H2: �0 ∈ �, � is an open subset of ℜk;

H3: ∀� ∈ �, �(., �) and �θ (., �) are Borel measurable and �θ {X, .} is continuous on � for all X;

H4: �θ is first-moment continuous at �0; E[�θ(X, .)] exists, is finite, and is of full rank.

H5: Let �t ≡ �(Xt, �0)

and 
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and assume 

(i): E[�0�′0] exists and is finite,  

(ii): vj converges in mean square to 0, and

(iii): (v′j vj )
1/2 is finite,

which implies E[�(Xt, �0)] = 0.

H6: Let  solve 

Then, Hansen shows that

(A5)

where

(A6)

(A7)

and �θ(Rt, �) denotes the derivative of �(Rt, �) with respect to �.14 Specifically, let �(Rt, �) denote the
following vector function: 

(A8)

The GMM estimator of �, denoted by , is given implicitly by the solution to

(A9)

which yields the standard estimators  and  given in Equation 3. For the moment conditions in Equation
A8, H is given by:

. (A10)

Therefore, V� = � and the asymptotic distribution of the Sharpe ratio estimator follows from the delta
method as in the first section:

(A11)

where ∂g/∂� is given in Equation A3. An estimator for ∂g/∂� may be obtained by substituting  into
Equation A3, and an estimator for � may be obtained by using Newey and West’s (1987) procedure:
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and m is the truncation lag, which must satisfy the condition m/T → ∞ as T increases without bound to
ensure consistency. An estimator for VSR can then be constructed as

(A15)

Time Aggregation
Let � ≡ [µ   σ2   γ1   …   γq–1]′ denote the vector of parameters to be estimated, where γk is the kth-order
autocovariance of Rt, and define the following moment conditions:

(A16)

where . The GMM estimator  is defined by Equation A9, which yields the

standard estimators  and  in Equation 3 as well as the standard estimators for the autocovariances:

(A17)

The estimator for the Sharpe ratio then follows directly:

(A18)

where

As in the first two sections of this appendix, the asymptotic distribution of (q) can be obtained by applying
the delta method to g  where the function g(.) is now given by Equation 20. Recall from Equation A5 that
the asymptotic distribution of the GMM estimator  is given by

(A19)
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hence, V� = �. The asymptotic distribution of (q) then follows from the delta method:

, (A22)

where the components of ∂g/∂� are

(A23)

(A24)

(A25)

and

(A26)

Substituting  into Equation A26, estimating � according to Equation A12, and forming the matrix product
 yields an estimator for the asymptotic variance of (q).

Using  When Returns Are IID

For IID returns, it is possible to evaluate � in Equation A20 explicitly as

(A27)

where ν3 ≡ E[(Rt – µ)3], ν4 ≡ E[(Rt – µ)4], and � is partitioned into a block-diagonal matrix with a (2 × 2)
matrix �1 and a diagonal (q – 1) × (q – 1) matrix �2 = σ4I along its diagonal. Because γk = 0 for all k > 0,
∂g/∂� simplifies to

(A28)
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(A30)

and

(A31)
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where ∂g/∂� is also partitioned to conform to the partitioned matrix � in Equation A27. Therefore, the
asymptotic variance of the robust estimator (q) is given by

(A32)

If Rt is normally distributed, then ν3 = 0 and ν4 = 3σ4; hence,

(A33)

SR

VGMM q( )
∂g
∂�
------ �

∂g
∂�′
-------- a � 1a′ b�2b′+= =

q 1
ν3SR

σ3-------------– ν4 σ4–( )SR2

4σ4
---------+ qSR( )2 1

j
q--–

 
 
 2

.
j =1

q –1

∑+=

VGMM q( ) q 1 3σ4 σ4–( ) SR2

4σ4
---------+ qSR( )2 1

j
q--–

 
 
  2

j =1

q –1

∑+=

q 1 1
2
--- SR2+ 

  qSR( )2 1
j
q--–

 
 
 2

j =1

q –1

∑+=

VIID q( ) qSR( )2 1
j
q--–

 
 
 2

VIID q( ).≥
j =1

q –1

∑+=



The Statistics of Sharpe Ratios

July/August 2002 51

Notes
1. See Sharpe (1994) for an excellent review of its many appli-

cations, as well as some new extensions.
2. The Central Limit Theorem is a remarkable mathematical

discovery on which much of modern statistical inference is
based. It shows that under certain conditions, the probabil-
ity distribution of a properly normalized sum of random
variables must converge to the standard normal distribu-
tion, regardless of how each of the random variables in the
sum is distributed. Therefore, using the normal distribution
for calculating significance levels and confidence intervals
is often an excellent approximation, even if normality does
not hold for the particular random variables in question. See
White (1984) for a rigorous exposition of the role of the
Central Limit Theorem in modern econometrics.

3. See, for example, Lo and MacKinlay (1999) and their cita-
tions.

4. Additional regularity conditions are required; see Appen-
dix A, Hansen (1982), and White for further discussion.

5. The term “robust’’ is meant to convey the ability of an
estimator to perform well under various sets of assump-
tions. Another commonly used term for such estimators is
“nonparametric,” which indicates that an estimator is not
based on any parametric assumption, such as normally
distributed returns. See Randles and Wolfe (1979) for fur-
ther discussion of nonparametric estimators and Hansen
for the generalized method of moments estimator.

6. See, for example, Campbell, Lo, and MacKinlay (1997,
Ch. 9), Lo and MacKinlay (Ch. 4), Merton (1980), and
Shiller and Perron (1985).

7. The exact expression is, of course,

For most (but not all) applications, Equation 16 is an excel-
lent approximation. Alternatively, if Rt is defined to be the
continuously compounded return [i.e., Rt ≡ log (Pt /Pt –1),
where Pt is the price or net asset value at time t], then
Equation 16 is exact.

8. See Bodie (1995) and the ensuing debate regarding risks in
the long run for further evidence of the inadequacy of the
Sharpe ratio—or any other single statistic—for delineating
the risk–reward profile of a dynamic investment policy.

9. The kth-order autocorrelation of a time series Rt is defined
as the correlation coefficient between Rt and Rt–k, which is
simply the covariance between Rt and Rt–k divided by the
square root of the product of the variances of Rt and Rt–k.
But because the variances of Rt and Rt–k are the same under
our assumption of stationarity, the denominator of the
autocorrelation is simply the variance of Rt.

10. See, for example, Harvey (1981, Ch. 6.2).
11. These are the investment styles reported in the Altvest

database; no attempt was made to verify or to classify the
hedge funds independently.

12. The p-value of a statistic is defined as the smallest level of
significance for which the null hypothesis can be rejected
based on the statistic’s value. In particular, the p-value of
16.0 percent for the Q-statistic of Washington Mutual
Investors in Table 4 implies that the null hypothesis of no
serial correlation can be rejected only at the 16.0 percent
significance level; at any lower level of significance—say,
5 percent—the null hypothesis cannot be rejected. There-
fore, smaller p-values indicate stronger evidence against
the null hypothesis and larger p-values indicate stronger
evidence in favor of the null. Researchers often report
p-values instead of test statistics because p-values are easier
to interpret. To interpret a test statistic, one must compare
it with the critical values of the appropriate distribution.
This comparison is performed in computing the p-value.
For further discussion of p-values and their interpretation,
see, for example, Bickel and Doksum (1977, Ch. 5.2.B).

13. See, for example, Ackermann, McEnally, and Ravenscraft
(1999), Brown, Goetzmann, and Ibbotson (1999), Brown,
Goetzmann, and Park (2001), Fung and Hsieh (1997a, 1997b,
2000), and Liang (1999, 2000, 2001).

14. See Magnus and Neudecker (1988) for the specific defini-
tions and conventions of vector and matrix derivatives of
vector functions.
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